The formation and molecular structure of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Sm} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$

Shaowu Wang, Yongfei Yu, Zhongwen Ye and Changtao Qian
Institute of Organic Chemistry, Anhui Normal University, Wuhu, Anhui 241000 (China)

Xiaoying Huang
Fujian Institute of Research on the Structure of Matter, Fuzhou, Fajian 350002 (China)

(Received February 12, 1993; in revised form May 7, 1993)

Abstract

Reaction of $1 / 2$ mole ratio of ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{SmCl}_{2} \cdot 3 \mathrm{THF}$ and $\mathrm{NaC} \equiv \mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ in THF solution resulted in the formation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Sm} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$; the complex crystallizes in monoclinic space group $P 2_{1} / n$ with unit cell constants $a=8.254(5)$, $b=24.63(1), c=8.339(3) \AA, \beta=101.33(5)^{\circ}$ and $D_{\mathrm{c}}=1.67 \mathrm{~g} / \mathrm{cm}^{3}$ for $Z=4$. Refinement has led to a final R value of 0.041 based on 2106 independent observed reflections. The THF molecule is coordinated to the samarium atom at a Sm-O distance of 2.522(6) \AA. The $\mathrm{Sm}-\mathrm{C}($ cyclopentadienyl) bond lengths range from $2.70(1)$ to $2.80(1) \AA$ and average $2.742(1) \AA$. A comparison of some significant structural parameters along the isostructural series $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Ln} \cdot \mathrm{THF}(\mathrm{Ln}=\mathrm{La}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Gd}, \mathrm{Dy}, \mathrm{Lu}$ and Sm$)$ with the ionic radii of Ln^{3+} was made.

Key words: Samarium; Cyclopentadienyl; Crystal structure

1. Introduction

Although some dicyclopentadienyl lanthanide alkynyl complexes, $\mathrm{Cp}_{2} \mathrm{Ln}$ (alkynyl), have been reported [1-3], only one monocyclopentadienyl lanthanide bisalkynyl complex of the type $\mathrm{CpLn}(\text { alkynyl })_{2}$, namely $\mathrm{CpHo}(\mathrm{C} \equiv \mathrm{CPh})_{2}[4]$ has been synthesized and characterized. With the original intention of broadening the scope of research on $\mathrm{CpLn}(\text { alkynyl })_{2}$ type complexes, we attempted to synthesize $\mathrm{CpSm}\left(\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}=\right.$ $\left.\mathrm{CH}_{2}\right)_{2}$. As a result, a fine crystal of $\mathrm{Cp}_{3} \mathrm{Sm} \cdot \mathrm{THF}$, instead of $\mathrm{CpSm}\left(\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}$ was obtained. Considering the series $\mathrm{Cp}_{3} \mathrm{Ln} \cdot \mathrm{THF}$, the synthesis and structure of $\mathrm{Cp}_{3} \mathrm{Sm} \cdot \mathrm{THF}$ have not been reported. We therefore investigated the structure of the title complex and compared some significant structural parameters of the isostructural series $\mathrm{Cp}_{3} \mathrm{Ln}$. THF (Ln = La [5], Pr [6], Nd [6,7], Gd [8], Dy [9], Lu [10] and Sm).

2. Results and discussion

The crystal of $\mathrm{Cp}_{3} \mathrm{Sm} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$ is monoclinic, space group $P 2_{1} / n$ with unit cell constants $a=8.254(5)$, $b=24.63(1), c=8.339(3) \AA, \beta=101.33(5)^{\circ}$ and $D_{c}=$ $1.67 \mathrm{~g} / \mathrm{cm}^{3}$ for $Z=4$. The final values of the positional and thermal parameters are listed in Table 1, bond lengths and angles are in Table 2.

In some of our previous work [11-17], we reported that the organolanthanide complexes with both Cp and other ligands are comparatively unstable when heated, disproportionating, owing to rearrangement of ligands at different temperatures. We also found that complexes of the type $\mathrm{CpLnL}_{2}(\mathrm{~L}=$ ligand) are less thermally stable than those of the type $\mathrm{Cp}_{2} \mathrm{LnL}$. The final disproportionation products of both CpLnL_{2} and $\mathrm{Cp}_{2} \mathrm{LnL}$ type complexes are $\mathrm{Cp}_{3} \mathrm{Ln}$ and LnL_{3}. Rogers et al. [8] also pointed out that the formation of $\mathrm{Cp}_{3} \mathrm{Gd} \cdot$ THF is the result of the disproportionation reaction of CpGdCl_{2} in THF solution. The same situation has been encountered in the reaction of $1 / 2$ mole ratio of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{SmCl}_{2} \cdot 3 \mathrm{THF}$ and $\mathrm{NaC} \equiv \mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}=$

[^0]CH_{2} in THF with $\mathrm{Cp}_{3} \mathrm{Sm} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$ being the only identified product. Since after the initial filtration a pure solution was obtained, it seems likely that the formation of the title complex is the result of the disproportionation reaction shown below:
$3 \mathrm{CpSmCl}_{2} \cdot 3 \mathrm{THF}$

The molecule (Fig. 1) has a coordination sphere of three η^{5}-cyclopentadienyl ligands and one tetrahydrofuran ligand. The geometry around the samarium atom in this structure can be described as slightly distorted tetrahedral, with the centres of the three cyclopentadienyl rings and the oxygen atom of tetrahydrofuran forming the apices of the tetrahedron. In overall geometry, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Sm} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$ bears a remarkable resemblance to $\mathrm{Cp}_{3} \mathrm{La} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$ [5], $\mathrm{Cp}_{3} \mathrm{Pr} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}[6]$, $\mathrm{Cp}_{3} \mathrm{Nd} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}[6,7], \mathrm{Cp}_{3} \mathrm{Gd} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}[8], \mathrm{Cp}_{3} \mathrm{Dy} \cdot$ $\mathrm{OC}_{4} \mathrm{H}_{8}[9]$ and $\mathrm{Cp}_{3} \mathrm{Lu} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$ [10].

The fact that there are 15 lanthanide elements which have such a close mutual resemblance means that we can compare the influence of ionic radius on coordination geometry and crystal structures. Table 3 compares some significant structural parameters along the isostructural series $\mathrm{Cp}_{3} \mathrm{Ln} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$. The $\mathrm{Sm}-\mathrm{O}$ distance of $2.522(6) \AA$ appears short compared with the $\mathrm{Nd}-\mathrm{O}$ length of $2.56(1) \AA$, but long in relation to the $\mathrm{Gd}-\mathrm{O}$ length of 2.494(7) \AA. The bond length $\mathrm{Ln}-\mathrm{O}$ in the isostructural series $\mathrm{Cp}_{3}-\mathrm{Ln} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$, from La to Gd therefore presents a decreasing trend as the ionic radius of Ln^{3+} decreases. The three cyclopentadienyl ligands are coordinated to the samarium atom in an η^{5}-fashion with an average $\mathrm{Sm}-\mathrm{C}$ length of $2.742(1) \AA$ A. The range extends from $2.70(1)$ to $2.80(1) \AA$. As can be seen (Table 3) the length of $\mathrm{Ln}-\mathrm{C}$, in general, decreases as the crystal radius of Ln^{3+} decreases.

Baker and Raymond [18] previously pointed out that $\mathrm{Cp}_{3} \mathrm{Ln}-\mathrm{X}$ compounds are structurally similar to those formulated as $\mathrm{Cp}_{3} \mathrm{U}-\mathrm{X}$. Thus, the centroid-U-centroid angles in $\mathrm{Cp}_{3} \mathrm{U}(\mathrm{C} \equiv \mathrm{CPh})$ [19] average 117°, while the centroid- $\mathrm{U}-\mathrm{C}(\boldsymbol{\sigma})$ angles are nearly 100°. In the title complex the corresponding average angles are 117.19° and 99.8°.

3. Experimental section

All manipulations were routinely performed under argon using Schlenk tubes with solvents and reactants
purified and dehydrated by standard methods. Melting points were determined in sealed argon-filled capillaries. IR spectra was recorded on a Perkin-Elmer 983(G) spectrometer, and elemental analysis was carried out with a Yanaco MT-2 analyzer.

3.1. Formation of $\mathrm{Cp}_{3} \mathrm{Sm} \cdot \mathrm{THF}$

To the suspension of $0.226 \mathrm{~g}(5.79 \mathrm{mmol}) \mathrm{NaNH}_{2}$ in 30 ml THF was added dropwise 0.556 g (5.79 mmol) allylpropargyl ether, prepared by a literature method [21]. After the reaction was stirred for 10 h , a solution of $\mathrm{CpSmCl}_{2} \cdot 3 \mathrm{THF}$, prepared by a literature method

TABLE 1. Positional and thermal parameters

Atom	x	y	z	$B_{\text {eq }}$
Sm(1)	0.07864(6)	0.35570(2)	0.44590(5)	2.34(2)
O(1)	-0.1109(8)	0.4183(3)	0.2559(7)	3.3(3)
C(1)	-0.284(1)	0.4259(6)	0.262(1)	5.1(6)
C(2)	-0.371(2)	0.436(1)	$0.091(2)$	11.0(1)
C(3)	-0.252(2)	0.4516(8)	0.004(2)	9.0 (1)
C(4)	-0.090(1)	0.4316(6)	0.091(1)	5.0(6)
C(11)	0.379(1)	$0.3373(6)$	0.367(2)	6.6(8)
C(12)	0.302(2)	0.378(1)	0.250(1)	8.0 (1)
C(13)	$0.299(2)$	$0.4254(8)$	0.338(3)	7.6(9)
C(14)	0.372(2)	0.4158(7)	0.496(2)	6.1(7)
C(15)	0.414(1)	0.3643(7)	0.511(2)	5.4(6)
C(21)	-0.140(2)	0.2943(5)	0.229 (2)	8.1(8)
C(22)	0.015(2)	$0.2771(6)$	0.212(2)	$7.0(8)$
C(23)	0.083(2)	0.2497(5)	$0.350(1)$	5.2(6)
C(24)	-0.022(2)	0.2509(5)	$0.455(1)$	5.0(6)
C(25)	-0.164(2)	0.2779 (5)	0.382(2)	5.8(6)
C(31)	0.137(3)	0.4088(9)	$0.742(2)$	7.0(1)
C(32)	0.002(3)	0.4275(7)	0.674(2)	8.0(1)
C(33)	-0.119(1)	0.386 (2)	0.662(2)	12.0(1)
C(34)	-0.020(5)	0.342(1)	$0.736(3)$	11.0(2)
C(35)	$0.120(4)$	$0.359(1)$	0.775(2)	10.0(1)
H(1)	-0.3274	0.3942	0.3031	6.1
H(2)	-0.2974	0.4561	0.3288	6.1
H(3)	-0.4246	0.4040	0.0453	12.8
H(4)	-0.4500	0.4642	0.0885	12.8
H(5)	-0.2771	0.4363	-0.1028	10.4
H(6)	-0.2500	0.4900	-0.0041	10.4
H(7)	-0.0087	0.4590	0.0945	6.0
H(8)	-0.0588	0.4003	0.0384	6.0
H(9)	0.4224	0.3032	0.3428	7.9
H(10)	0.2832	0.3747	0.1341	9.6
H(11)	0.2728	0.4603	0.2915	9.1
H(12)	0.4033	0.4428	0.5781	7.4
H(13)	0.4814	0.3496	0.6069	6.5
H(14)	-0.2226	0.3082	0.1439	9.7
H(15)	0.0552	0.2767	0.1125	8.4
H(16)	0.1792	0.2277	0.3619	6.2
H(17)	-0.0105	0.2295	0.5510	6.0
H(18)	-0.2663	0.2781	0.4187	7.0
H(19)	0.2324	0.4298	0.7826	8.8
H(20)	-0.0202	0.4650	0.6549	9.5
H(21)	-0.2358	0.3898	0.6419	13.8
H(22)	-0.0605	0.3094	0.7731	13.1
H(23)	0.2045	0.3389	0.8446	11.5

TABLE 2. Selected bond lengths (\AA) and bond angles (${ }^{\circ}$)

$\mathrm{Sm}(1)-\mathrm{O}(1)$	2.522(6)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.48(2)
$\mathrm{Sm}(1)-\mathrm{C}(11)$	2.72(1)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.38(2)
Sm(1)-C(12)	2.75(1)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.47(2)
$\mathrm{Sm}(1)-\mathrm{C}(13)$	2.78(1)	$\mathrm{C}(11)-\mathrm{C}(15)$	1.36(2)
Sm(1)-C(14)	2.80(1)	C(11)-C(12)	1.45 (2)
$\mathrm{Sm}(1)-\mathrm{C}(15)$	2.72(1)	C(12)-C(13)	1.39(2)
Sm(1)-C(21)	2.74(1)	C(13)-C(14)	1.36(2)
Sm(1)-C(22)	2.73(1)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.31(2)
Sm(1)-C(23)	2.73(1)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.38(2)
$\mathrm{Sm}(1)-\mathrm{C}(24)$	2.72(1)	$\mathrm{C}(21)-\mathrm{C}(25)$	1.39(2)
Sm(1)-C(25)	2.75(1)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.35(2)
$\mathrm{Sm}(1)-\mathrm{C}(31)$	2.75(1)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.35(2)
Sm(1)-C(32)	2.76(1)	$\mathrm{C}(24)-\mathrm{C}(25)$	1.38(2)
Sm(1)-C(33)	2.76(1)	$\mathrm{C}(31)-\mathrm{C}(32)$	1.23(2)
$\operatorname{Sm}(1)-\mathrm{C}(34)$	2.72(1)	$\mathrm{C}(31)-\mathrm{C}(35)$	1.27(3)
Sm(1)-C(35)	2.70(1)	C(32)-C(33)	1.42(3)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.45(1)	C(33)-C(34)	1.42(3)
$\mathrm{O}(1)-\mathrm{C}(4)$	1.46(1)	C(34)-C(35)	1.21 (3)
Sm(1)-Cent1	2.498	Sm(1)-Cent2	2.470
Sm(1)-Cent3	2.500		
Cent1-Sm1-Cent2	119.22	O(1)-Sm1-Cent 1	101.12
Cent1-Sm1-Cent3	113.38	O(1)-Sm1-Cent 2	96.3
Cent2-Sm1-Cent3	118.97	O(1)-Sm1-Cent 3	101.92
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(4)$	107.4(7)	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Sm}(1)$	123.5(6)
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{Sm}(1)$	123.9(6)	$\mathrm{O}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	106(1)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	107(1)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108(1)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	106.2(9)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	106(1)
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$	104(1)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	108(1)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	109(2)	C(14)-C(15)-C(11)	113(1)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(25)$	108(1)	$C(23)-\mathrm{C}(22)-\mathrm{C}(21)$	107(1)
C(24)-C(23)-C(22)	109(1)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$109(1)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$	106(1)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(35)$	110(2)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$109(2)$	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$100(1)$
C(33)-C(34)-C(35)	107(2)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(31)$	114(2)

Cent 1 is the centroid of the $\mathrm{C}(11)-\mathrm{C}(15)$ ring, Cent 2 of the $\mathrm{C}(21)-$ $C(25)$ ring and Cent 3 of the $C(31)-C(35)$ ring.
[20], $1.452 \mathrm{~g}, 2.89 \mathrm{mmol}$ in THF was transferred to the thus formed sodium alkynylide, $\mathrm{NaC}=\mathrm{CCH}_{2} \mathrm{OCH}_{2}-$ $\mathrm{CH}=\mathrm{CH}_{2}$, and the reaction mixture stirred at room temperature for another 10 h . The orange mixture was then centrifuged and the solution concentrated to about 10 ml . The orange crystal formed upon cooling. Yield

Fig. 1. Crystal structure of $\left(\eta^{5} \cdot \mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Sm} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$.
32% (0.42 g , based on $\mathrm{CpSmCl}_{2} \cdot 3$ THF), melting point $212^{\circ} \mathrm{C}$ (colour darkening from $167^{\circ} \mathrm{C}$), IR $\left(\mathrm{cm}^{-1}\right) \nu(\mathrm{Sm}-$ $\left.\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) 776,1014,1462,3089, \nu\left(\mathrm{Sm}-\mathrm{OC}_{4} \mathrm{H}_{8}\right) 928$, 1075. Found: C, 53.89 ; H, 5.57. Calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{OSm}$ ($\mathrm{Cp}_{3} \mathrm{Sm} \cdot \mathrm{THF}$): C, $54.61 ; \mathrm{H}, 5.54 \%$.

3.2. Crystallography of $\mathrm{Cp}_{3} \mathrm{Sm} \cdot \mathrm{THF}$

A single crystal of the title complex with dimensions $0.6 \times 0.3 \times 0.15 \mathrm{~mm}$ was sealed in a thin-walled glass capillary under argon. Unit cell parameters and 3282 intensities were measured on a Rigaku AFC-5R diffractometer with Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71069 \AA$) in the range of $3^{\circ}<2 \theta<50^{\circ}$ by $2 \theta / \omega$ scanning. Corrections for Lp and absorption with empirical scanning technique were applied and 2106 independent reflections with $I>3 \sigma(I)$ were used in the structure determination. The heavy atom Sm was located by directed methods and other nonhydrogen atoms were obtained from successive difference Fourier synthesis. The convergence of the last stage of full-matrix least-squares refinement with nonhydrogen atoms anisotropically re-

TABLE 3. Significant structural parameters in the isostructural series $\mathrm{Cp}_{3} \mathrm{Ln} \cdot \mathrm{THF}$

Compound		$\begin{aligned} & \hline \mathbf{L n}^{3+} \text { ionic } \\ & \text { radii }(\AA)[22] \end{aligned}$	$\begin{aligned} & \mathrm{Ln}-\mathrm{O} \\ & \text { (A) } \end{aligned}$	$\begin{aligned} & \text { Ln-Cent1 } \\ & \text { (A) } \end{aligned}$	Ln-Cent2 (A)	Ln-Cent 3 (A)	$\operatorname{Ln}-\mathrm{C}(\mathrm{av})$ (A)
$\mathrm{Cp}_{3} \mathrm{La} \cdot \mathrm{THF}$	[5]	1.36	2.57(1)	2.5	2.575	2.576	2.84(4)
$\mathrm{Cp}_{3} \mathrm{Pr} \cdot \mathrm{THF}$	[6]	1.32	2.555(9)	2.54	2.55	2.51	2.80(2)
$\mathrm{Cp}_{3} \mathrm{Nd} \cdot \mathrm{THF}$	[6]	1.30	2.54(1)	2.51	2.51	2.51	$2.78(2)$
$\mathrm{Cp}_{3} \mathrm{Nd} \cdot \mathrm{THF}$	[7]	1.30	2.56 (1)	2.52	2.55	2.54	2.79 (4)
$\mathrm{Cp}_{3} \mathrm{Sm} \cdot \mathrm{THF}^{\text {a }}$		1.27	2.522(6)	2.498	2.470	2.500	2.742(1)
$\mathrm{Cp}_{3} \mathrm{Gd} \cdot \mathrm{THF}$	[8]	1.25	2.494(7)	2.47	2.49	2.49	2.74(3)
Cp ${ }_{3} \mathrm{Dy} \cdot \mathrm{THF}$	[9]	1.20	2.522(5)	2.4772	2.5158	2.5071	2.74(8)
$\mathrm{Cp}_{3} \mathrm{Lu} \cdot \mathrm{THF}$	[10]	1.17	2.39(2)	2.40	2.42	2.43	2.69(4)

[^1]fined and hydrogen atoms isotropically joined only in Fc calculations reached to $R=0.041, R_{\mathrm{w}}=0.052$, ($w=$ $\left.1 / \sigma^{2}(\mathrm{Fi})\right), \Delta \max / \sigma=0.11$ with the residual peaks in the final difference Fourier map $\Delta \rho_{\max }=-1.030$ to $0.807 \mathrm{e} / \AA^{3}$. All calculations were performed on a MicroVAX-II computer with Rigaku/MSC TEXSAN V2.1 package.

Acknowledgments

This work was supported by the Foundation of Laboratory of Organometallic Chemistry in Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. Thanks are also due to Mrs. Jiping Hu for her helpful assistance.

References

1 H. Schumann and W. Genthe, in Handbook on the Physics and Chemistry of Rare Earths (Edited by K.A. Gschneider Jr and L. Eyring), Vol. 7, p445, Elsevier, The Netherlands (1984).
2 Q. Shen, D. Zhen, L. Lin and Y. Lin, J. Organomet. Chem., 391 (1990) 307.

3 W.J. Evans, R.A. Keyer and J.W. Ziller, Organometallics, 9 (1990) 2628.

4 N.M. Ely and M. Tsutsui, Inorg. Chem., 14 (1975) 2680.
5 R.D. Rogers and J.L. Atwood, J. Organomet. Chem., 216 (1981) 383.

6 Y. Fan, P. Yu, Z. Jin and W. Chen, Sci. Sin., Sect. B, I (1984) 387.
7 F. Benetollo and G. Bombieri, Inorg. Chim. Acta, 95 (1984) L7.
8 R.D. Rogers, R.V. Bynum and J.L. Atwood, J. Organomet. Chem., 192 (1980) 65.
9 Z. Ye, S. Wang and Y. Yu, Inorg. Chim. Acta, 177 (1990) 97.
10 C. Ni, D. Deng and C. Qian, Inorg. Chim. Acta, 110 (1985) L7.
11 Z. Ye, Z. Zhou, Z. Luo, X. Wang and F. Shen, Acta Chim. Sin., 44 (1986) 707.
12 Z. Ye, H. Ma and Y. Yu, J. Less-Common Met., 126 (1986) 405.
13 H. Ma and Z. Ye, J. Organomet. Chem., 326 (1987) 369.
14 Z. Ye, Y. Yu and H. Ma, Polyhedron, 7 (1988) 1095.
15 Z. Ye and Z. Wu, Synth. React. Inorg. Met-Org. Chem., 19 (1989) 157.

16 Z. Wu, Z. Ye and Z. Zhou, Polyhedron, 8, (1989) 2109.
17 Y. Yu, S. Wang, H. Ma and Z. Ye, Polyhedron, 11 (1992) 265.
18 J.L. Atwood, C.F. Hains, M. Tsutsui and A.E. Gebala, J. Chem. Soc., Chem. Commun., (1973) 452.
19 E.C. Baker and K.N. Raymond, Inorg. Chem., 120 (1976) 361.
20 S. Manastyrskj, R.E. Maginn and M. Dubeck, Inorg. Chem., 2 (1963) 904.

21 J.P. Guermont, Mém. Serv. Chim. État., (Paris), 40 (1955) 147.
22 R.D. Shannon, Acta Crystallogr., Sect. A, 32 (1976) 751.

[^0]: Correspondence to: Dr. Zhongwen Ye.

[^1]: ${ }^{a}$ Present work.

